A Floer–Gysin exact sequence for Lagrangian submanifolds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Lagrangian Submanifolds in Simply-connected Cotangent Bundles

We consider exact Lagrangian submanifolds in cotangent bundles. Under certain additional restrictions (triviality of the fundamental group of the cotangent bundle, and of the Maslov class and second Stiefel-Whitney class of the Lagrangian submanifold) we prove such submanifolds are Floer-cohomologically indistinguishable from the zero-section. This implies strong restrictions on their topology....

متن کامل

Isotropic Lagrangian Submanifolds in Complex Space Forms

In this paper we study isotropic Lagrangian submanifolds , in complex space forms . It is shown that they are either totally geodesic or minimal in the complex projective space , if . When , they are either totally geodesic or minimal in . We also give a classification of semi-parallel Lagrangian H-umbilical submanifolds.

متن کامل

Graded Lagrangian Submanifolds

Floer theory assigns, in favourable circumstances, an abelian group HF (L0, L1) to a pair (L0, L1) of Lagrangian submanifolds of a symplectic manifold (M,ω). This group is a qualitative invariant, which remains unchanged under suitable deformations of L0 or L1. Following Floer [7] one can equip HF (L0, L1) with a canonical relative Z/N -grading, where 1 ≤ N ≤ ∞ is a number which depends on (M,ω...

متن کامل

Dirac operators on Lagrangian submanifolds

We study a natural Dirac operator on a Lagrangian submanifold of a Kähler manifold. We first show that its square coincides with the Hodge de Rham Laplacian provided the complex structure identifies the Spin structures of the tangent and normal bundles of the submanifold. We then give extrinsic estimates for the eigenvalues of that operator and discuss some examples. Mathematics Subject Classif...

متن کامل

Lagrangian Submanifolds of Euclidean Space

We give an exposition of the result that there is no closed exact Lagrangian submanifold L of (C, ω0) where ω0 is the standard symplectic structure. We show that the assertion is equivalent to the statement that the perturbed Cauchy-Riemann equation ∂̄J0u = g for maps u from the unit disc D to C which map the boundary circle ∂D to L has no solution for some function g0. To do this, we follow [1]...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Commentarii Mathematici Helvetici

سال: 2013

ISSN: 0010-2571

DOI: 10.4171/cmh/307